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Motivation Problem Definition

Sharing travel recommendations is harder than it
should be. What if we could use your trip photos
to reverse-engineer your itinerary for you?

Goal: Build a location-specific landmark
detection model
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Challenges Approach

ImageNet Transfer Learning

* Large number of total classes (restricting to

local geographic area is huge improvement) Given the large overlap in application, use transfer
. . learning on models shown to have success with the

* Landmarks can have many very different visual ImageNet classification problem:

components and can be quite broadly defined; . . 4

photos usually include only a subset Inception v3 -High Accuracy | mageNet Model Accuracy (Top 1)
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* Landmarks often have a lot of visual detail, «  Mini-batch size

which can be lost at lower resolutions e —
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* Training end-to-end models can take a lot of *  Size of training set -
processing time for this type of data «  Layers to retrain .
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Results Discussion

Best Model: MobileNet (100% size), 256px resolution +  Somewhat surprisingly, the smaller MobileNet model outperformed Inception v3
Test Accuracy: 85.8% (Train 99.0%, Dev 88.7%)

Error rate was relatively well distributed across landmarks
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Retrain additional model layers
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