

2D Character Sketches to 3D Models

Andrew Yu <acyu@stanford.edu>

Concept: convert grayscale front + side 2D character sketch into 3D model using deep learning

- → Motivation: speed up asset generation for video games or animation
- → Prior Work: mostly single image reconstruction [2-6], whereas here, the hope is that 2 views will be more generalizable

3D Model Format

- 3D Models represented by point cloud set of (x,y,z):
- → Typical 3D models in mesh format (edges and vertices)
- → But mesh requires a graph loss (difficult to define)
- → Point cloud loss is simpler

Define: Chamfer distance (CD) loss between two point sets $S, \hat{S} \in \mathbb{R}^3$ [3]

$$\mathcal{L}_{\text{CD}}\big(S, \hat{S}\big) = \sum_{y \in S} \min_{\hat{y} \in \hat{S}} \{\|y - \hat{y}\|_2^2\} + \sum_{\hat{y} \in \hat{S}} \min_{y \in S} \{\|y - \hat{y}\|_2^2\}$$

 \rightarrow For S, \hat{S} CD calculates distance to **nearest neighbor** point in other set

Network Architecture

Encoder & Decoder Architectures

CapsNet like a convolutional network except:

- activations are matrices ("capsules") instead of scalars
- non-linearity between layers from a trained dynamic routing
- network "figures out" how to route activation outputs to next layer

Routing by "Expectation-Maximization Routing" (EM Routing) [1]:

· Routes low-level features to be

Decoder: Upconvolution Network

Decoder series of (upcony → cony) lavers

- upconv is a "transpose" of a (conv → max pool) encoding layer
- maps lower dimensional features to higher dimensional output
- finish with linear fully connected layer to scale or spread output

Results

- Cost saturates, need more hyperparameter tuning and training examples · Dev predicted output is overfitting
- to lizards in training set Predicted points tend to cluster
- near (0,0,0), decoder needs to be tuned to give better spread over

General Conclusions

- 2D → 3D point cloud feasible, but not very good
- · Unordered output data bad for generation
- Scales poorly with number of output points
- · Still need to do 3D mesh reconstruction (annoying)
- Future: End-to-end 2D → mesh approaches more desirable [2]

References

- S. Sabour, et al., "Matrix capsules with EM roding," *ICLR* 2018, no. 2011, pp. 1–12, 2018.

 J. K. Pottes, et al., "ImageZMesh: A Learning Framework for Single Image 20 Reconstruction," 2017.

 C. B. Charles, et al., "ImageZMesh: A Learning Framework for Single Image 20 Reconstruction," 2017.

 G. C. B. Chy, et al., "DAZPE: A Unified Aproach for Single and Matrix-way O Oligent Reconstruction," vol. P. Bucharan, et al., "Automatic single-view dramater model reconstruction," *Proc. Statish-Based Imartic* Part Expressive 2017, pp. 5–14, 2013.

Acknowledgements: Xingyu Liu for TA project mentorship, Russell Kaplan for AWS GPU credits & advice, Andrew Ng for teaching class.