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Motivation

* Validating the safety of autonomous vehicles
in the real world is costly, dangerous and time
consuming

¢ Model human driven vehicles for realistic

simulation testing of autonomous vehicles

Imitation learning approaches have worked

well for driving a single car

* This project extends imitation learning to
driving multiple cars
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Algorithm: Parameter Sharing GAIL

Algorithm 1 PS-GAIL
Input: Expert trajectories 75 ~ 7, Shared policy param-
eters 6, Discriminator parameters v, Trust region size
Axr
for k< 0,1,... do

Rollout trajectories for all agents 7 ~ 7,

Score 7* with critic, generating reward 7(s, a; Y1)
Batch trajectories obtained from all the agents
Take a TRPO step to find 7o, ,

Update the critic parameters ¢

This algorithm extends GAIL to the
multi-agent setting using parameter
sharing

é Policy and Critic: Deep Neural Nets

. . features
* Policy representation ¢

* Non-linearity

* High dimensionality

* Stochasticity

* 64 Gated Recurrent Units

( FF layer + ELU

® Critic representation
* Wasserstein GAN with gradient
penalty
* Feed forward network consisting
of (128, 128, 64) ReLU units
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Future work

Improving model performance by (i) reward augmentation, (ii)
applying learning algorithms that encourage more diverse
behavior, and (iii) using a recurrent critic in order to account for
partial observability.
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