Introduction

Food is central to human life, but finding nutritious and satisfying food is not easy. In this context, we
introduce Chefnet, an extension to the im2recipe model, which matches food images to their recipes.
Modifications include incorporating newer and deeper CNN models - Densenet121, and Resnet101.

Data
We use the RecipelM dataset for training and validation. Exact duplicates and recipes that share the
same images were manually removed, as were instances with unwanted characters or without
discriminative food properties. We investigate model performance with the reduced training and
validation sizes of 20,000 and 2,000 in alignment with our computational resources (Figure 4).

Illustration & Demonstration

Example 1:
A correct matching of image to recipe
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Example 2:
An incorrect matching of image to recipe
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We obtained recipe embeddings by concatenating the cooking instruction encodings and the recipe list
encodings. The former was determined by an LSTM, and the latter by a bidirectional LSTM due to its
inherent unordered nature. We used a CNN for the image embeddings. In particular, we experimented
with Densenet121, Resnet50 and Resnet101 models. The image and recipe embeddings were then
projected onto the same embedding space using fully connected layers. Our goal is to maximize the
cosine similarity between the embeddings of matching food-recipe pairs, and to minimize that
between the encodings of non-matching ones.
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Given the embeddings, we obtain class probabilities followed by a softmax activation. While
learning the model, we first fix the weights of the image network and learn the recipe
encodings. Then we freeze the recipe encodings, and learn the image network.

Discussion and Results

We compare the performance (Figure 1) and computation costs (Figure 2) of using
Densenet121, Resnet101, and Resnet50 models, each with their respective optimal learning
rates, which we attain through experiments (Figure 3). We find that DenseNet achieves the
lowest cosine loss at a negligibly higher computation cost compared to Resnet50. Thus, when
training for longer on the full data set, we expect our Densenet model to perform better
relative to the ResNet-50, which is used in the original paper.
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Figure 2 comparing computation Costs of 3 Different CNN Architectures
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