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I) Task

Overview: Affecting fifty million people worldwide, epilepsy is a chronic
disorder of the central nervous system characterized by recurrent seizures
During a seizure, aberrations in the brain’s electrical activity produce
physical symptoms ranging from convulsion to loss of memory to
An hal (EEG) is a record produced by
electrophysiological monitoring of the electrical activity of the brain.
Electrodes are placed on the scalp and measure voltage fluctuations
between the nodes as the net effect of millions of neurons in the brain.
EEGs are used for diagnosis of a number of neurological disorders,
including epilepsy. sleep disorders, comas and more
Our goal task is to train a single neural network to classify an epoch of
EEG data from any patient as being seizure or non-seizure Previous
attempts at EEG classification have fallen short by

1. Building separate models for each patient
2. Using data sets of only certain seizures and non-seizure activities.
3. Yielding high false positive rates

We hope to overcome
these shortcomings by
using vastly more data
than previous attempts.
For example, Shoeb
(2009) used 23 patients
and 844 EEG files,
whereas we have access to
12,385 patients and
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136,363 EEG files.

Figure 1: An example EEG where a
seizure begins around t=1836 seconds

II) Dataset

Put briefly, our data set is huge and heterogeneous. The data set consists
of 136,363 electroencephalograms: 99,721 from adults measured at the
Stanford Hospital and 36,642 from chlldren measured at the Lucile Packard
Children's Hospital. Each i stored in a hi
data format (HDF) containing anonymized data about the patient, metadata
about the EEG read, the raw signals of the EEG read (a matrix with shape
number of channels by length of EEG), and accompanying annotations with
timestamps for the EEG. The data is remarkably heterogeneous:
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Figure 2: Histogram of patient ages

Because the data is not explicitly labeled as seizure and non-seizure, we use
the nurse annotations as a proxy for seizure labels.

Given the heterogeneity of the data, we filtered our data by:

Only including scalp EEG (i.e., excluding intracranial reads).

‘Taking reads only from the nodes in the International 10-20 System
Limiting length to minimum time of seizure: 10 seconds.

Only including files with a sampling rate of 200 Hz.

Standardizing each waveform to have mean 0 and standard deviation 1

With these filters in place, we defined our seizure and non-seizure data:

Seizures: Every time a file contains a seizure annotation, slice the following 10 seconds.
There are 11,641 unique files with 25,850 labeled seizures fitting the above filtering.
Non-seizures: For each file without a seizure annotation, randomly sample a 10-second
slice. Randomly sample from all such slices to get 25,850 non-seizures occurrences.

The result is 51,700 matrices shaped 25x2000 with a binary label.
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through one layer with batch norm, dropout, and ReLU before a
final layer with a sigmoid activation function. This model is based
off Schirrmeister’s work (2017) on EEG decoding.

Recurrent Network: Process each of the 2000 inputs into two bi- ..
directional LSTM units followed by mean pooling, a dense layer
with batch norm and ReL.U, and a final layer with a sigmoid
activation. This is based on many-to-one recurrent networks on

temporal data.
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III) Data Pre-Processing

o
Figure 3: The nodes used in the
International 10-20 System

IV) Proposed Architectures

We tested four different model architectures:

. Baseline: Flatten the matrix and run logistic regression via a one-
layer neural network with no hidden layers.

Dense Network: Flatten the matrix and run it through two hidden
layers with ReLU activation functions before outputting a single
neuron with a sigmoid activation function

Convolutional Network: Run matrix through five 1-dimensional
convolutional layers each with 10x1 filters, 3x1 max-pooling, and
exponential linear units. Flatten the remaining matrix and run it D
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Figure 4: In a bi-directional recurrent neural network with hidden
layers, each time-step of input i fed to each LSTM unit which
then passes information forward and backward through time.

V) Results

As expected, the worst performing architecture was the logistic regression
model. With just 50,000 parameters, it couldn’t fit much beyond guessing.
Our top performing architecture on the test set was the densely connected

0.535 feed-forward neural network, achieving an accuracy and F1 score of 90.8%
0.533 and 0.897, respectively. The architecture’s flexibility likely was its key to
success with over 1 billion parameters to tune.
0.921 « The convolutional neural network also performed impressively. It achieved
0.897 the highest training accuracy and F1 score at 96.5% and 0.947, respectively.
However, this model may have over fit given its poor test set performance
0.947 *From preliminary error analysis, this difference seems to be an error in the
0.522* convolutional evaluation code
* The bi-directional LSTM network performed okay with an accuracy around
0.621 60%. Its lackluster performance is expected given the known challenge of
0.592 training an LSTM with such a large number of time steps.

These results are at apparent convergence after 50 epochs of training.

VI) Discussion and Next Steps

Our top-performing archi were the densel and the
convolutional networks. Both achieved accuracies and F1 scores over 90%,
well-beyond the results of published work for a general EEG classifier used
on any patient to classify any of the types of seizures. This is especially
remarkable given the heterogeneity of the data, which contains ample non-
seizure activity, many types of seizures, and many patients.

That said, we see four major areas of improvement for this task:

1. Improve Labels: The current seizure annotations are not completely
trustworthy nor complete. We can apply labeling functions to generate
sound training data as described in Ratner et al (2017).

2. Improve Embeddings: We currently use the raw waveform. However,
Bashivan et al (2016) proposes an EEG “video™ as discussed in Figure 5
that may better capture temporal and spatial information.

3. Improve Network: Our proposed models have been relatively shallows
compared to what Dai et al (2016) suggest is necessary to capture all
information from raw waveforms

4. Segmentation: We would love to expand our slices to other time points
of a seizure or segmentation of an EEG file into seizure and non-seizure
activity. Unfortunately, the annotations usually only mark seizure start,
so this is difficult

This work is already clinically useful as a tool to identify seizures in EEGs.
An ambitious additional goal is to forecast a seizure ¢ seconds ahead of
time. We plan to try this but do not expect great results as even the best
clinicians cannot forecast seizures from EEG data.
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Figure 5: Bashivan et al propose representing an EEG as a video by (1) projecting the
nodes into two-dimensions, (2) taking the Fourier intensity of three discretized
buckets over a t-second interval, (3) combining these three channels to create an
image, and (4) combining images temporally to make a video.

VII) References and Code

My code can be found at https:/github.com/nhershev/cs230eeg.
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