

Cocktail Party Problem of Bird Sounds

Jason Chou* and Chun-Hao To**

Department of Physics, Stanford University; *jasonhc / **chto @stanford.edu

Birds often appear in groups

and we wanted to be able to tell which species are present with confidence. While most (if not all) existing apps and projects[1] focus on single-label classification, our goal is to tackle the more challenging while more realistic multi-label multi-class classification problem

10 "loud" species common in the Bay Area (and campus) were chosen. with the hope that this project will be helpful in identifying local birds!

Online birdsound database provides hours of recordings

We downloaded audios from xeno-canto^[1] for the 10 species

# recordings	tot. len. (hr)	# processed spectrograms
154	1.24	2500
290	4.31	4317
201	2.44	6045
176	2.23	4156
294	3.37	3109
294	4.80	5303
265	4.73	4318
290	4.11	4737
295	3.31	3478
300	7.14	3332
	154 290 201 176 294 294 265 290 295	154 1.24 290 4.31 201 2.44 176 2.23 294 3.37 294 4.80 265 4.73 290 4.11 295 3.31

Spectrograms were extracted to represent data

- mp3 → 3-sec segments → magnitude spectrograms - Separating noise: med. blur, spot removal, morpho. closing^[2]

Synthesized multi-species spectrograms + noise = train/val/test datasets

- Randomly select and weight≤5 species to simulate scenarios where multiple birds are present concurrently

Example synthesized spectrogram of 3 birds singing together

Our most successful models for multi-label task

2. ResNet with Binary Relevance 3. DenseNet +BLSTM last layer

3. Adding a Bi-directional LSTM as the last layer takes advantage of the sequential nature of sounds

Each model is then connected to either Binary-Cross-Entropy or Log-Sum-Exponential Pairwise ranking loss^[6] for training

Discussions and Conclusions

Output

- 1. Simplified ResNet is more-than-sufficient for single-label classifying 10 species
- 2. Binary relevance method is conceptually more intuitive and tops most evaluation metrics in multi-label task by treating every species independently
- 3. Log-sum-exponential pairwise ranking loss is most useful when learning multilabel task for single network where labels are treated independently
- 4. Exploiting sequential nature of bird sounds with additional LSTM layer does not hurt or improve noticeably the performance of multi-label classification
- 5. Variations of ResNet are preferred due to their lower memory consumption and faster training

Future Perspectives

Upon acquiring more computing resources, we wish to extend the datasets to 100+ species immediately, which will give us the most realistic situation to test the validity of our approaches (on Stanford campus for example, there are roughly 100 year-round species)

Acknowledgement

None

We are grateful to Amazon Web Services and the teaching stafffor their generous support of computing resources and gui-delines for project as well as the extremely helpful example codes and tutorials

Fraining Set

Binary relevance attains best F1 score while ranking loss proves valuable

F1* score is the reference metric for determining best models. Most models had gone

*F1 score is the harmonic mean of Precision and Recall *BCE: Binary Cross-Entropy Loss **LSEP: Log-sum-exponential Pairwise Ranking Loss

InceptionNet^[7]

Single-label model

MaxPool

Output