Generating Webpages

from Screenshots

Andrew S. Lee

andrewslee@stanford.edu

Abstract

This project created a PyTorch implementation of an
image-captioning model in order to convert screenshots of
webpages into code, following pix2codel'l. The system
passes images into a ResNet-152-based CNN encoder
model, which generates features for a custom decoder
RNN model. The project resulted in peak BLEU scores
plateauing around 0. 92 after a few hundred epochs.

Data

Our data used pix2code’s generated screenshots based
on a Bootstrap-based DSL vocabulary (18 words). It
contains 1,750 pairs of 2400x1380 color images and
their associated DSL code. We converted the image
dimensions to 224x224 to use with ResNet-152.

Actual Predicted

Above: Example of target and predicted web pages (and DSL).

Models

All of our features are gathered from a pre-trained
ResNet-152 (size 1x1x2048 per screenshot) model. While
the model was not trained on GUI imagesl3), it does
surprisingly well at extracting backgrounds, edges, colors,
and text. This meant it was an easy and appropriate base
to build our system on.

t

o [t [
Input Screenshot ResNet-152 4 4 +

1 t

Encoder Model

The encoder model is based on a pre-trained ResNet-152
model. We replace the final collection layer in order to
collect a feature vector, which we then pass through a
linear layer.

Decoder Model

The decoder model takes as inputs 1) the extracted
features from the encoder model and 2) their target
captions (DSL code put into a word embedding). It uses an
LSTM, which we teach a language model based on the
inputted features.

ic = o(Wix, + bi + Wity + b)) 0y = 6(WioXe + bio + Whohi-1) + bio)
Jo = o(Wigxe + big + Wigh-1) + byy) o = ficg-n + g
8 = tanh(Wigx; + big + Wigho_1) + by) h, = o, tanh(c,)

Above: Equations for multi-layer LSTM RNN.

Results

We are using Bilingual Evaluation Understudy Scores (BLEU) to
quantify our results, which is common for image-captioning modelsf2.

Model Training Test Train Set De_v Set Te§t Set
(BLEU Score) (BLEU Score)) Size #) Size #)
oo shsessia 0.95 0.92 1360 170 170
et L 0.99 0.90 1360 170 170
e e 0.85 0.76 1360 170 170
hidden oize-256 0.93 0.84 1360 170 170
Discussion

The most surprising part of this project’s success is how well a pre-
trained image model can extract features from graphical interfaces,
especially because they’re not trained on them. However, we
suspect that the pre-trained model is the source of most of the
existing error, particularly around color-detection. What makes the
system effective at the moment is likely the very simple DSL
language. It would be interesting to experiment with a broader
vocabulary (2+ orders of magnitude larger) and see if the BLEU
scores hold up.

Future

There is definitely room for more exploration — at this point, the
system is more of a proof of concept to expand on. We wanted to
create an end-to-end model which eliminates the Bootstrap-based
DSL and pre-trained CNN, but lacked the time get it working. There is
also more room to tweak hyper-parameters and experiment further.

References

