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Motivation and Quick Summary hallow and Deep Distillation Experiments with CIFAR-10

» Knowledge distillation (KD): training student models with knowledge from teachers
= Utilizing “soft targets” learned by teacher models on training data

’ Distill ResNet-18 for 5-layer CNN | "Deeper’ distillation for ResNet-18
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= Dark knowledge: not fully understood by community; worth “exploring” with P (10k samples)
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= Networks: MLP, 5-L CNN, ResNet,.Wlf:IeResNet, ResNext, PreResNet, DenseNet d.vus%"a:‘m;a; — ; KD ResNext25.8 N
= Dark knowledge provides regularization for both shallow and deep models
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and Future W
Training with Unlabeled MNIST Data: Dark Knowledge > KD provides regularization benefits, even for well-designed state-of-the-art models
T E— T TAREnE » Training with unlabeled data or partial dataset should leverage previous dark knowledge
distillation details 0.01 0.1 » As expected, benefits on "easy” dataset are limited. Future work needed on ImageNet
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