

Exploring Knowledge Distillation of DNNs for Efficient Hardware Solutions

Haitong Li

Department of Electrical Engineering, Stanford University; Email: haitongl@stanford.edu

Motivation and Quick Summary

Knowledge distillation (KD): training student models with knowledge from teachers

- Utilizing "soft targets" learned by teacher models on training data
- Beneficial for small models deploying on resource-constrained edge devices
- Dark knowledge: not fully understood by community; worth "exploring" with experiments and data analysis for future work inspiration
- What has been done in this project (PyTorch framework):
 - Explored KD training on MNIST and CIFAR-10 datasets (unlabeled/data-less schemes)
 - Networks: MLP, 5-L CNN, ResNet, WideResNet, ResNext, PreResNet, DenseNet
 - Dark knowledge provides regularization for both shallow and deep models

Datasets and Methodology

- MNIST dataset (60,000/10,000) - Normalization
- design of the second of the se
- CIFAR-10 dataset (50,000/10,000)
- Normalization
- Augmentation (random crop, random horizontal flip)

Training pipeline and KD loss implementation

Teacher training \rightarrow 'softened' targets \rightarrow Student training with KD loss

$$q_i = \frac{exp(z_i / T)}{\sum exp(z_j / T)}$$

$$\begin{split} L_{KD}(W_{student}) &= \alpha T^2 * CrossEntropy(Q_s^{\tau}, Q_T^{\tau}) \\ &+ (1 - \alpha) * CrossEntropy(Q_s, y_{true}) \end{split}$$

Training with Unlabeled MNIST Data: Dark Knowledge

NN architecture &	Learning rate:	Learning rate:	
distillation details	0.01	0.1	
MLP-784-1200-1200-10	98.30%	Learning rate too high	
(dropout=0.8)	(as the teacher model)		
MLP-784-800-800-10	98.10%	97.75%	
MLP-784-800-800-10 w/KD	98.18%	98.50%	
MLP-784-800-800-10 w/KD	97.69%	98.16%	
(unlabeled training data)	97.09%	78.10%	

Shallow and Deep Distillation Experiments with CIFAR-10

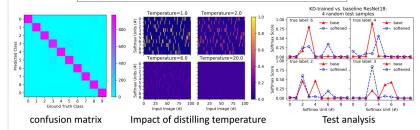
Distill ResNet-18 for 5-layer CNN

'Deeper' distillation for ResNet-18

	$Dropout\!=\!0.5$	No dropout
5-layer CNN 3 CONV (w/ BN) + 2 FC	83.51%	84.74%
5-layer CNN w/ ResNet18-KD	84.49%	85.69%
5-layer CNN 5% training data	65.86%	/
5-layer CNN w/ ResNet18-KD 5% training data	66.71%	1

	Evaluation accuracy (10k samples)
Baseline ResNet-18	94.175%
+ KD WideResNet-28-10	94.333%
+ KD PreResNet-110	94.531%
+ KD DenseNet-100	94.729%
+ KD ResNext-29-8	94.788%

Visualization & Analysis: ResNext-29 → ResNet-18



Discussions and Future Work

- > KD provides regularization benefits, even for well-designed state-of-the-art models
- Training with unlabeled data or partial dataset should leverage previous dark knowledge
- As expected, benefits on "easy" dataset are limited. Future work needed on ImageNet

References

- [1] Hinton, Geoffrey, et al., arXiv:1503.02531 (2015).
- [2] Romero, A., et al., arXiv:1412.6550 (2014).
- [3] Lopes, R. G., et al., arXiv preprint arXiv:1710.07535 (2017)
- $\hbox{[4] Some pre-trained models: https://github.com/bearpaw/pytorch-classification}\\$