

LightGAN: An Adversarial Approach to Natural Language Generation at a Large Scale

Jonathan Booher ¹(jaustinb), Nithin Kannan (nkannan), Enrique De Alba (edealba) Department of Computer Science¹

Motivation

Natural language generation is increasingly important in today's world of digital assistants. It is, however, difficult to have these systems produce language that makes sense. Traditional approaches like n-grams suffer from repeating corpus text and RNNs suffer from poor scaling as the vocabulary increases.

We therefore present a method that we call LightGAN. A GAN trained with a novel LSTM design origianlly from Microsoft that can address large vocabularies with minimal space requirements.

Data

- · 467 Million tweets from 2009 from the SNAP group [1]
- · Example raw data:

T 2009-06-30 23:59:51 H http://twitter.com/eboe W Out for karaoke and shots. Text if you dare. http://plurk.com/p/15f43e

Preprocessing

- Remove timestamps and user information
- Remove non english language tweets
- · Replace websites, emojis, and @s with special
- · Pad the lines to the max length and remove words that appear less than 5 times.
- · All preprocessing done beforehand to ensure that is not the bound
- Reduced vocabulary size to 100,000
- Example processed data:

Out for karaoke and shots. Text if you dare. <url> <naw> <naw> ... <naw>

Key Idea:

- · Allocate words into a 2D table
- Learn embeddings for each column and row
- A prediction for a row and column is a prediction for a
- · Reallocate periodically to group similar words together in rows

Method: LightRNN [2]

Savings:

- Table allows us to perform two softmaxes to ceil(sqrt(|V|)) instead of one to |V|
- Space savings of O(sqrt(|V|))

· Increased model complexity as operations are executed twice

Word Allocation:

- · Initially random
- · Reallocate the words by solving a min cost max flow problem
- Have costs be proportional to the perplexity the model achieves on that word

Results

Training was implemented using 'Curriculum Training'. Where the GAN is trained on increasingly large sequences [3]. Testing was accomplished using Beam Search with a beam width of 100.

 $RT < AT_TAG >$ what wud you do RT <AT_TAG> gdi fastfood <AT_TAG> continually craazy <AT_TAG> be oversleeping my scholl

Discussion

- · Size of the dataset causes computability
- · Attention and dropout in the generator greatly improved the stability of the model
- Model still has problems with longer sequences

Future Work

- Compare these results to those produced by a gan using traditional LSTM
- · Train on different vocabulary sizes to see if the scaling affects accuracy
- · Improve stability by working with different schedules for D and G

P(W,) $P_r(W_t)$ $P_c(W_t)$ $P_c(W_t)$ W₂ W₄ X_{t-1} X_{t-1} X_{t-1} X, W. W. (dst

Method: The WGAN-GP Language Model

The Language Model:

- · Frame as supervised learning problem: predict the next word
- Use RNNs for sequence prediction
- · Pretrain the embedings and word allocation table

The WGAN [4]:

- Minimize the distance between the real and fake distributions
- · Imporves the stability of traditional GAN
- · Use same architecture for generator and discriminator

- An improved form of gradient clipping for GANs
- · Penalize the gradients for being far from unit length

<u>References</u>

- J. Leskovec, A. Krevl. SNAP Datasets: Stanford Large Network Dataset Collection, June 2014.
- [2] Xiang Li, Tao Qin, Jian Yang, Xiaolin Hu, Tie-Yan Liu: LightRNN: Memory and Computation-Efficient Recurrent Neural Networks NIPS 2016: 4385-4393
- NIPS 2016: 4385-4393

 [3] Ofir Press, Amir Bar, Ben Bogin, Jonathan Berant, Lior Wolft.
 Language Generation with Recurrent Generative Adversarial
 Networks without Pre-training. CoRR abs/1706.01399 (2017)

 [4] Ishaan Gulrajani, Faruk Ahmed, Mart[\text{\text{\text{Wij}}} Arjovsky, Vincent
 Dumoulin and Aaron C. Courville. Improved Training of
 Wasserstein GANs. CoRR abs/1704.00028 (2017)