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Introduction
Understanding the beam profile of X-ray free-electron lasers (FELs) and its
correlation with electron bunch parameters is important to the improvement of FEL
facilities. Towards this end, we use deep neural networks to classify the X-ray beam
profiles obtained under various conditions. Both a supervised learning model and

an unsupervised learning model are used, and the results are compared.

Supervised Learning
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We then use a CNN to learn the classification:
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However, because of ambiguities in

labelling some images, we estimate

the human error to be = 8%...

higher-order mode percentage

Unsupervised Learning
To utilize the large dataset available to us and address the ambiguity in human labelling, we use a 2-step
unsupervised learning with an autoencoder network to reduce the 100x100 images to a 32-parameter “code”

before they are further reduced to 2D information. A total of 76800 images are used as input.
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Results: Correlation with Electron Bunch Parameters
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Our results show that deep neural networks can be used to characterize FEL
X-ray beam profiles and reveal their relation with tunable parameters. In

general, higher bunch charge, higher-order crystal reflection and insufficient
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< QC number of undulators lead to the increase of higher-order modes. This can
UG
be used to optimize FEL performance in the future.



