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1.) What is the optimal structural topology for a given set of forces and fixed Shallow NN »  Batch normalization did not improve the accuracy or IOU on any of the models
constraints on a system? especially for topologies with small and detailed features (like the one at right)
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(arrows), and fixed boundary nodes compliance of the system
(hashing) in the system 3 . »  The augmented training dataset performed about 1-2% better on both the shallow
2.) Given that topology optimization is a i ive tool, can we stop Deep NN (U'Netl ]Ar‘:h'tecﬂ"e) and deep neural networks
the topology optimization early and use a neural network to predlct the topology of the
system? 16 16
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93.5%) compared with the deep neural network (91.8% and 95.7%) and trained
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where designs tend to be made up of

compliance of the system CONV2D (3%3) + RELU typical shapes like rectangles and
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i g s MAXPOOL / UPSAMPLE (2X2) is more complex because these are
s DROPOUT (KEEP PROB = 0.7) damped resonant structures, not static
top. opt. stopped after 5 —PUATIEN+ SIGMOID: structures. MEMS Accelerometer!S!
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topologies (ex: a car, shown right) T Ve
or at least make the optimization =

process less computationally
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> 10,000 2D topology optimizations, each containing a unique set of input forces >  Intersection over union: P ation Process!®!
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