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% Models with different architectures

Hyperparameter Search

% For our model, we conducted a hyperparameter search over learning rate,
beta, optimization method, and discriminator insertion point
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and adversarial examples. This means the encoder successfully filters out

adversarial noise, which leads to better classification on adversarial data

Data and Features

Dataset

% Similar accuracy on regular examples indicates that adversarial training
did not have a large impact on model performance
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and regular examples over 100 epochs

% Baseline without adversarial training has poor Hyperparameters

% We used the CIFAR-10 dataset, which
consists of 60,000 32x32 color images in 10
classes, with 6,000 images per class
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Discriminators
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