

- Style transfer has been explored in images via Neural Style Transfer [GEB15]
- We extend this method to audio
- We focus on vocal audio with potential applications in electronic music

Data / Features

- NSynth dataset [ERR+17]

 - 3-4 second single-note pitches sampled at 64 kHz Generated by neural networks in the style of various instruments
 Used by the Magenta project to train the NSynth
- model weights [TEN]
- Content dataset
- 2 NSynth acoustic vocal pitches
- 1 kHz sine wave sound Recording of a team member's voice
- - o 3 synthetic flute pitches in the NSynth test set

Loss Function

· Content loss - taken from encoding layer

$$\mathcal{L}_C(x_C, x_G) = \frac{1}{\text{number of entries}} \sum_{\text{all entries}} (C(x_C) - C(x_G))^2$$

- Style loss linear combination of hidden layer embeddings
 - Gram matrix captures correlation between layers $\mathcal{L}_{S_G}(x_S, x_G) = \sum_S w_s \left| \frac{1}{\text{number of entries}} \sum_{\text{ull parties}} (\mathcal{G}(S(x_S)) - \mathcal{G}(S(x_C)))^2 \right|$
 - L2 loss treats each layer independently
 - $\mathcal{L}_{S_{i_2}}(x_S, x_G) = \sum_{C} w_s \left| \frac{1}{\text{number of entries}} \sum_{w_i \in \mathcal{F}} (S(x_S)) S(x_C) \right|^2$
- Total cost weighted combination of style and content

 $\mathcal{L}(x_C, x_S, x_G) = \mathcal{L}_S(x_S, x_G) + \alpha \mathcal{L}_C(x_C, x_G)$

Audio Style Transfer with Voices

Fabian Boemer Eric Gong Youkow Homma

Model

NSynth Encoder [ERR+17]

- WaveNet-based autoencoder
- Learns temporal embeddings for audio

Results

Chord-Pitch Learning

Discussion

- Pitch-Pltch Learning: For $\,\alpha=0\,$ with L2 loss, methodology interpolates between two pitches, showing we can move from one pitch to another via gradient backups.
- Chord-Pitch Learning: For $\,\alpha=0\,$ with L2 loss, methodology reconstructs a chord from a pitch after 30 iterations but further iterations result in white noise. Reconstructing a single pitch from a chord is unsuccessful
- L2 losses, rather than Gram matrix, used for early style layers can act as a faster, noisy decoder on single tones
- For $\alpha=0.01\,$ with Gram matrix loss, methodology preserves the content and adds additional frequencies for voice content.

Future Work

- Understand how matching the Maximum Mean Discrepancy via the Gram matrix affects NSynth layers/activations [LCC+17].
- Use histogram losses which minimized parameter tuning and blurring of images in the image Neural Style Transfer method [WRB17].
- Include losses based on weighted energy contour and frequency energy contour, which stabilized output in Neural Style Transfer for audio spectrograms [VS18].

References

[ERR+17] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and Mohammad Norouzi. Neural audio synthesis of musical notes with wavenet autoencoders, 2017.

[VS18] Prateek Verma and Julius O Smith. Neural style tra arXiv:1801.01589, 2018.