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Motivation Initial results
* Interactive imitation learning methods such as DAGGER address the * Chart shows the baseline performance of DAGGER, as well 1o
compounding error issues that plague behavioral cloning [1 as its performance when the novice policy was pretrained
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* However, they require the continual presence of an expert throughout that of the target environment -
training, which is a limitation in domains where access to the expert is « Results: 3%
expensive, such as in human-in-the-loop imitation learning [2][3] * No discernible benefit to pretraining in the highervs. £ ¢ pe——
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. P'erform remforce;menjc Iearnlng (gzg..TRI?O) to traina pf)llcy in thg neural networks to abruptly lose previously learned \
simulator; use this policy as an initialization for the novice policy in DAGGER knowledge about a task when trained on new data relevant 10
to a different task \/
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* Agent is a Dubins car initialized with a random pose in performance, many of { L o4
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« State transitions are affected by zero-mean Gaussian — * Because of this diversity of good policies, when performing
nioise:and a persistent drift force imitation learning we will often be switching between highly
P distinct behavioral modes, leading to catastrophic forgetting
* Observations are noisy lidar scans of the environment o . .
* Solution: Multitask Learning
* Simulators capture only a portion of the drift force and * « Train simultaneously rather than sequentially
none of the observation noise * In this case: interleave rounds of behavioral cloning into
the RL pretraining phase z
* Appears to minimize forgetting and improve learning g
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