Downscaling Oceanographic Satellite Data with Convolutional Neural Networks

The ocean circulation is a central player in regulating
Earth’s climate and supporting marine life by transporting
heat, carbon, oxygen, and nutrients throughout the world’s
ocean. Yet, our under ing of the p governing
these fluxes is still limited because of the relatively small
spatial scales involved, which are difficult to observe with
current remote sensing techniques. One technique
commonly used to enrich the wealth of information
contained in satellite data is downscaling. It consists in
reconstructing a high-resolution (HR) observation from a
low-resolution (LR) one’s. For 2D fields, this problem is
similar to image super-resolution in the computer vision
community and uses convolutional neural networks
(CNNGs) instead of traditional interpolation techniques to
learn the downscaling relationship between LR and HR
image. Given the availability of large datasets for ocean
remote sensing, it appears very tempting to investigate the
potential of deep learning models to downscale satellite-
derived observations.

Research Objectives
Are deep learning models efficient to downscale
ocean remote sensing datasets? This question is non
trivial as the spatio-temporal scales involved in
oceanographic field might be difficult to reconstruct for

CNN. In this work, we will try to rescale both Sea Surface

Temperature (SST) with a factor of 5 and Sea Surface
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Height (SSH) with a factor of 3, and by comparing different

CNN models taken from the super-resolution literature.

Datasets

>The OSTIA 1/20¢ SST (satellite data from microwave and

infrared sensors combined with in situ data from drifting
and moored buoys)

»>The NOAA-OI 1/4c SST (observations from 2 satellites:
AVHRR and AMSR-E)

»The Mercator-GOAFS 1/12c SSH (altimeter
assimilated into the NEMO ocean model

»The Mercator-GOMASG 1/4c SSH (data from al
altimeter missions: Jason-3, Sentinel-3A, HY-2A
Saral/AltiKa, Cryosat-2, Jason-2, Jason-1, T/P, ENVISAT
GFO and ERS1/2)
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SRCNN RMSE SRCNN RMSE VDSR Original
(Up) Resulting SST from the different models architecture and respective RMSE with original image on hybrid
distribution from model and satellite in Test dataset. (Down) Results from distribution of satellite data.
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Our experiments clearly points out the relevance of CNNs for the considered dataset with clear improvement over the
bicubic interpolation for geophysical fields downscaling. Still, further work are needed to consider other geophysical
variables and, more importantly, explore hyper-parameters space of the models used in this study.
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The horizontal dotted black line denotes the bicubic
interpolation score.
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