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g a Parasite with Deep Learnin
Schistosomiasis is a parasitic disease that, in 2016 alone, infected
over 206.4 million people. This debilitating disease is caused by
waterborne trematodes know as Schistosomes which must live part of
their lives in Bulinus and Biomphalaria freshwater snails before
infecting human hosts. In highly endemic areas of disease like the
Senegal River Basin (SRB), these snails generally live in patches of
vegetation along the shore or floating in the river. Effectively targeting
and controlling these snail populations can interrupt the disease cycle.
Recent advances in high resolution satellite imagery have allowed for
us to see where these sources of snail habitat are, but analysis of these
areas by hand is costly and time intensive.
We have built a deep convolutional neural network that classifies and
quantifies the prevalence of two types of vegetation—floating (‘in the
water’) and emergent (‘near shore’)-that provide habitat to the
schistosome-carrying snails from high resolution satellite imagery.
Creating a Training Set
o Parsed large-scale, 3m resolution satellite imagery of various SRB
regions of interest into smaller 150x150 TIFs. Saved TIFs with
infrared band highlighted to show photosynthetic vegetation in red.
o Manually classified 3918 images with two rankings, one ranking per
vegetation type (X = floating or emergent), on ranking scale:
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Iterating through Designs
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Learning rate = 0.009
Train = 95%, Dev = 5%
Mini batch size = 2
CONV stride = [1,1,1,1]
MAXPOOL stride = [1,8,8,1]
NOT run with data augmentation.
NOT run with weighted softmax cross entropy.
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Learning rate = 0.001
Weight = 100.0 applied to class 1.

Fixed matrix bug; cost function corrected.
Accuracies still artificially high, remain same.
Applied six methods of data augmentation to
all images not of rank 1-1.

o NOT run with weighted softmax cross entropy.
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o Mini batch size = 16
o Class weights for 1-9: [1.5,1,1,1,1,1,1.1,1.3,1.5]
o Accuracy calculation fixed to count a predicted

rank correct if:
Prediction — Correct
Prediction — Correct <= 1

if rank # 1
otherwise
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Accuracy-affecting bugs fixed. Bugs included:

o Images of rank 1-1 augmenting, and not images
of rank 2-2. Augmented files not persisting.

o Lengths of Y_F (floating labels), Y_E (emergent
labels), and X (images) not equal

Implemented softmax-less, binarized version of

model, classifying 1-1 as 0 and other rankings as 1.

Changed rank threshold:

o Prediction—Correct <=3 if rank # 1

Train Floating: 0.847

Test Floating: 0.875

Train Emergent: 0.743

Test Emergent: 0.833
*Accuracies are artificially high

Train Floating: 0.806, Ones: 0.937
Test Floating: 0.722, Ones: 0.963
Train Emergent: 0.656, Ones: 0.921
Test Emergent: 0.724, Ones: 0.968

Train Floating: 0.805, Ones: 0.932
Test Floating: 0.722, Ones: 0.953
Train Emergent: 0.653, Ones: 0.928
Test Emergent: 0.719, Ones: 0.978

(Results shown in Final Results
section.)

Final Results

Reflections on heat maps (below):
Emergent vegetation classified with
good precision, but model generates
many false positives.

Learning rate =0.0001

e o More accurately-classified, larger
2 training set necessary for model to
o learn floating vegetation.
= Reflections on cost and accuracy (left)
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e design iteration #5:
Train, Floating: 0.763 0912 o Model accurately distinguishes
Test, Floating: 0.752 n.05 between 1-1 and non 1-1 images.
Train, Emergent: 0.677 0.845 "
Test, Emergent: 0.694 0889 © Model does not generalize well to

unlabeled testing data.

Heat Map A: From multiclass implementation Heat Map B: From binarized implementation
of design iteration #5. Floating = Red, of design iteration #5. Emergent = Red.
Emergent = Blue, Both = Green.

______________Implications |
Our work suggests that a deep convolutional network can be used to
map localized habitat suitability for schistosome-carrying snails. Our
model indicates that changes in the prevalence of vegetation types can
be monitored from satellite imagery on a scale unmatched by
traditional methods. Further refinements to our model are needed to
make the network more precise, more accessible for researchers, and
able to classify vegetation on smaller scale images.

o Improving the accuracy and, in particular, the preciseness of the
model’s predictions by:
o Using higher resolution (<1m) satellite imagery
o Comparing satellite imagery with drone imagery during
manual labeling of training data.
o Continuing experimentation with parameters.



