Recipe for Disaster: A Seq2Seq Model for Recipe Generation Dev Bhargava and Thomas Teisberg ## **Background** - RNNs have had success at producing locally coherent text - Recipe instruction generation is particularly challenging: references specific ingredients, global coherence - Globally coherent recipe generation relatively unexplored - Polmareddi et. al (2015): Cuisine classification and generation with MDPs - · Brewe et. al (2015): Recipe generation with char- - · Choi et. al (2016): Globally coherent text generation #### **Problem Statement** - · Input a set of ingredients - · Output a sequence of instructions that govern the combination of these ingredients - · Mimic the style and syntax of a human written recipe - · Incorporate all ingredients into instructions #### **Dataset** - · The dataset used in our model was the MIT Recipe1M database - · Consists of over 1 million recipes consisting of a list of ingredients and instructions - We split the data as follows: - · Train: 95% of recipes - Development: 2.5% of recipes - · Test: 2.5% of recipes ### Model ## Results | | PP (Train) | PP (Dev) | BLEU (Dev) | |---------------------|------------|----------|------------| | Vanilla Seq2Seq | 3.83 | 539.84 | 0.0614 | | Attention | 3.80 | 892.52 | 0.0812 | | Dropout | 4.42 | 474.04 | 0.0598 | | Attention + Dropout | 4.02 | 736.35 | 0.0615 | | ingredients | model output | reference recipe | |--|--|---| | self rising flour
milk
mayonnaise
dried tarragon
garlic powder | mix all ingredients together and roll into
balls and bake at 350 degrees for 20
minutes | preheat oven to 425 degrees coat 12
muffin cups with nonstick cooking
spray in a bowl combine all ingredients
mix well divide batter equally amongst
muffin cups bake 12 to 15 minutes or
until golden serve warm | | water | combine all ingredients in a small
saucepan bring to a boil reduce heat
and simmer for 10 minutes remove
from heat and let cool and let cool | bring water to a boil in wok on high
setting stir in rice and cover reduce
heat to medium and simmer 15
minutes or until all water is absorbed
turn off heat and allow rice to sit 5
minutes fluff with a fork and serve | | raspberry lime juice
sparkling ginger ale
ice crushed | pour all ingredients in a blender and
blend until smooth | blend all ingredients on high until frothy | | vanilla vodka
sour apple liqueur | pour the vodka and vodka in a cocktail
shaker filled with ice shake vigorously
strain into a chilled cocktail glass
garnish with a lime wedge | shake with ice and strain into a chilled cocktail glass | | pomegranate juice | pour the grapefruit juice into a
champaone flute and stir well | pour pomegranate juice into champagne flutes dividing equally and | ## Data Pruning ## **Experiments** - · Regularization/Dropout - Luong Attention - · Beam Search - · Pretrained word embeddings #### Conclusion - · We were successfully able to minimize the training loss and generate novel recipes for ingredients - More work is needed to generalize more effectively to unseen examples - · Dev loss is not strictly predictive of performance - Categorical inference - · Further work: - · Dependency Parsing - Checklist Specialized Attention - · Bidirectional encoder - RNN Cell Type (GRU vs Vanilla vs LSTM) - · Specialized metrics for model evaluation